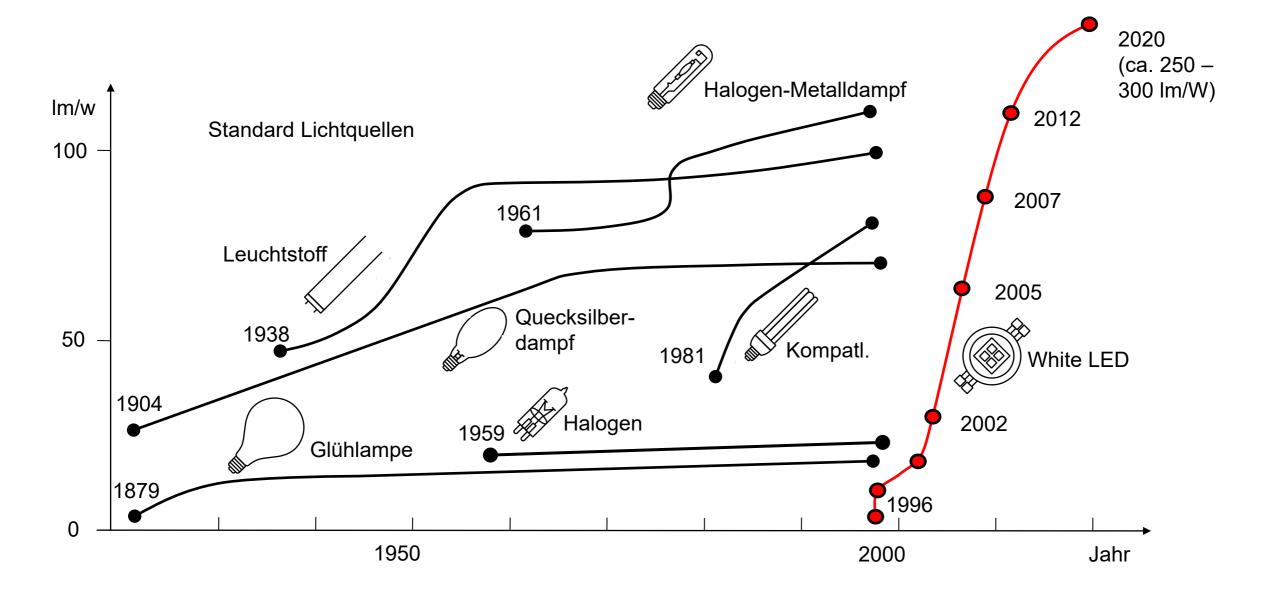


E-Handwerker Update

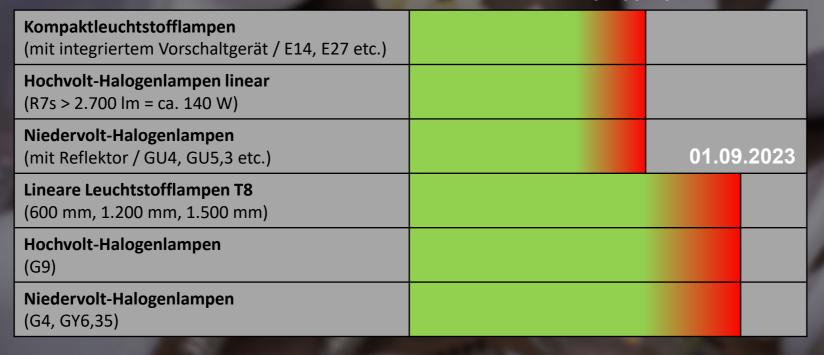


ÖKO DESIGN RICHTLINIE

LICHTAUSBEUTEN - HISTORIE

AUSPHASUNG VON LICHTQUELLEN

01.09.2021


Kompaktleuchtstofflampen (mit integriertem Vorschaltgerät / E14, E27 etc.)	
Hochvolt-Halogenlampen linear (R7s > 2.700 lm = ca. 140 W)	
Niedervolt-Halogenlampen (mit Reflektor / GU4, GU5,3 etc.)	

AUSPHASUNG VON LICHTQUELLEN

01.09.2021

AUSPHASUNG VON LICHTQUELLEN

01.09.2021

	71.03.2021	
Kompaktleuchtstofflampen (mit integriertem Vorschaltgerät / E14, E27 etc.)		
Hochvolt-Halogenlampen linear (R7s > 2.700 lm = ca. 140 W)		
Niedervolt-Halogenlampen (mit Reflektor / GU4, GU5,3 etc.)	01.09.2023	
Lineare Leuchtstofflampen T8 (600 mm, 1.200 mm, 1.500 mm)		
Hochvolt-Halogenlampen (G9)		
Niedervolt-Halogenlampen (G4, GY6,35)		
Kompaktleuchtstofflampen (ohne integriertem Vorschaltgerät)		
Hochvolt-Halogenlampen (R7s ≤ 2.700 lm)		
Lineare Leuchtstofflampe T5		
Kreisförmige Leuchtstofflampen		
Hochdruck-Entladungslampen		

Quelle: licht.de

UNSERE EMPFEHLUNG

Schritt 1

Schon jetzt Beleuchtungsanlagen hinsichtlich möglicher Leuchtmittel-Verbote im Blick haben und Altanlagen systematisch durch LED-Technologie ersetzen

Schritt 2

Schritt 3

Verwenden von Steuerungstechnologien Vorbereiten auf "digitale" Anwendungen von morgen

Smart City meets Smart Lighting

Lohnt sich jetzt schon eine Sanierung und wie sollte ich sanieren?

Die Retrofit-Lampe als Alternative?

PROBLEMATIK UND GEFAHREN

- Lichttechnisch
 - Keine vergleichbaren Lichtströme
 - Keine vergleichbaren Abstrahlwinkel
 - Häufig sichtbare stroboskopische Effekte und Flickergefahr

- Elektrotechnisch
 - Mögliche höhere Blindstromanteile
 - Oftmals nur für bestimmte VG vorgesehen
 - Technische Veränderung der Leuchte Keine fehlerfreie Funktion gewährleistet
 - VDE, ENEC, EMV
 - Keine Gewährleistungsansprüche

- Wirtschaftlich
 - Keine Fördermittel, da LED Leuchten deutlich effizienter und somit nachhaltiger sind.
 - Es ist ein Invest in eine Altanlage!

WEITERE INFORMATIONEN AUF UNSEREM UPDATE-PORTAL!

Planen von Beleuchtungsanlagen nach dem neusten Stand der Technik

ÜBERARBEITUNG EN 12464-1

BELEUCHTUNG VON ARBEITSPLÄTZEN IN INNENRÄUMEN

Weiterentwicklung

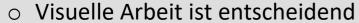
gewonnenes Wissen implementieren

DIE ERWEITERTE TABELLE

Ref. No.	Art des Innenraum(bereich)s, des	$ar{E}_m$	UGR	$\boldsymbol{U_o}$	R_a	Spezifische Bedingungen
	Bereichs der Sehaufgabe oder des	lx				
	Bereichs der Tätigkeit		_			

lef. Io.	$ar{ar{E}}_{\eta}$	m K	U_o	R_a	R_{UGL}	$ar{E}_{m,oldsymbol{z}}$ lx	$ar{E}_{m, oldsymbol{Wand}}$ Ix	$ar{E}_{m, extsf{Decke}}$ lx	Spezielle Anforderungen	
	erforderlich	modifiziert					$U_o \ge 0.1$	0		

BELEUCHTUNGSSTÄRKEN - STÄNDIG BESETZTE ARBEITSPLÄTZE

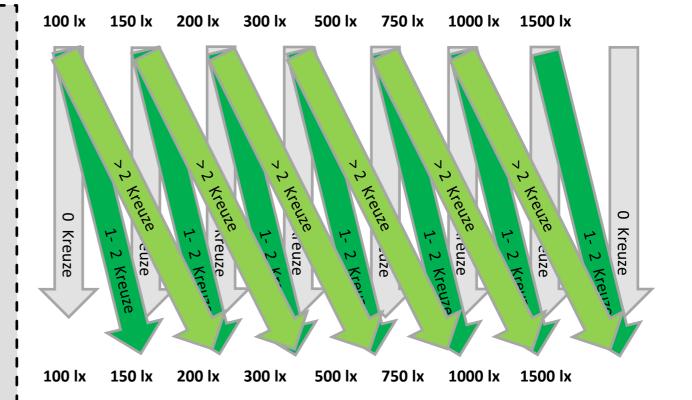

Ref. No.		$ar{E}_m$ U_o	$U_o \mid R_a \mid R_{UGL} \mid \bar{E}$			$ar{E}_{m,oldsymbol{W}oldsymbol{a}}$ nd	$ar{E}_{m, extsf{Decke}}$	Spezielle Anforderungen		
		erforderlich	modifiziert					$U_o \ge 0,1$.0	
33.2	Schreiben, Tippen, Lesen, Daten- verarbeitung	500	1000	0,60	80	19	150	150	100	Bildschirmarbeit, siehe 5.9 Raumhelligkeit, siehe 6.7 und Anhang B Beleuchtung sollte steuerbar sein, siehe 6.2.4. Bei kleineren Zellenbüros gilt die Wandanforderung für die Wand in Hauptblickrichtung. Für andere Wände kann eine niedrigere Anforderung von mindestens 75 lx akzeptiert werden.

Skala der Beleuchtungsstärke:

5 - 7,5 - 10 - 15 - 20 - 30 - 50 - 75 - 100 - 150 - 200 - 300 - 500 - 750 - 1000 - 1500 - 2000 - 3000 - 5000 - 7500 - 10 000 lx

2 Stufen der Beleuchtungsstärke

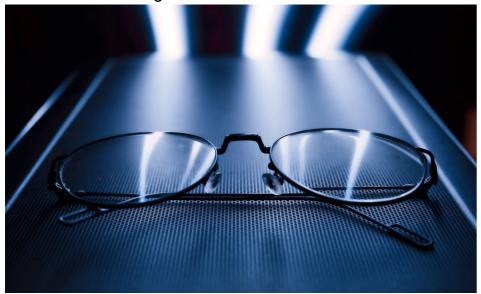
WANN WIRD ERHÖHT?

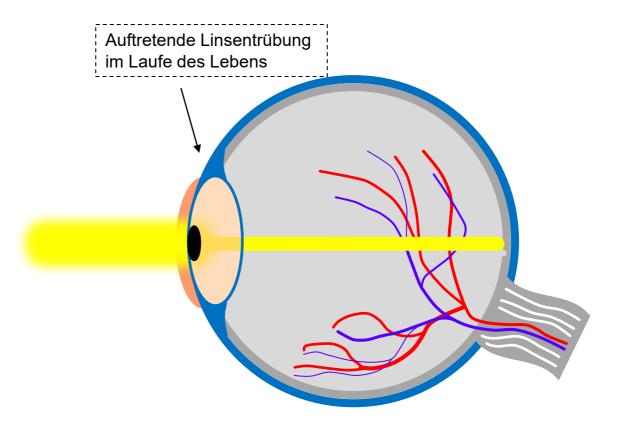


- X Behebung von Fehlern ist kostspielig
- Genauigkeit, höhere Produktivität oder gesteigerte Konzentration von großer Bedeutung
- Aufgabendetails ungewöhnlich klein oder von
- **X** geringem Kontrast
- 🕻 Aufgabe von ungewöhnlich langer Dauer
- Die Aufgabe hat geringes Tageslichtangebot
- Die Sehfähigkeit des Nutzenden liegt unter dem Normalwert

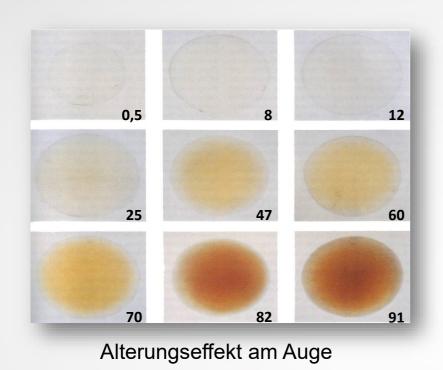
Zusätzliche Empfehlung

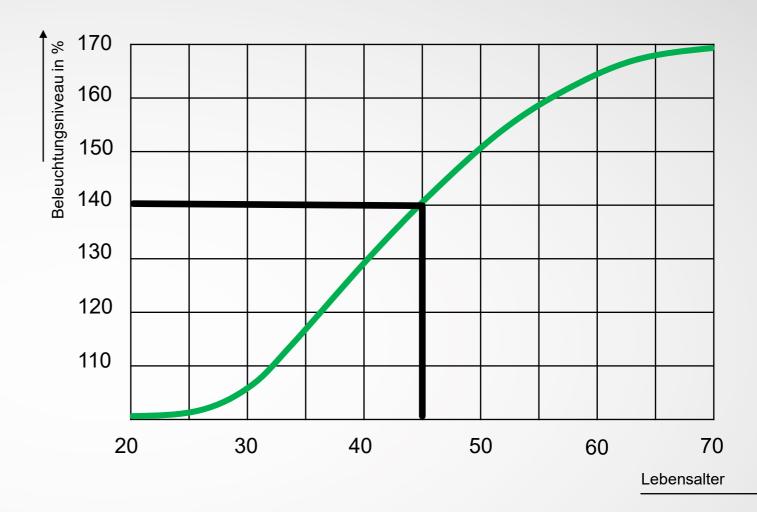
- \circ > 30 Jahre ≤ 50 Jahre
- > 50 Jahre


WARTUNGSWERT DER BELEUCHTUNGSSTÄRKE


WANN WIRD <u>ERHÖHT?</u>

Die Sehfähigkeit des Nutzenden liegt unter dem Normalwert




Die Sehfähigkeit des Nutzenden liegt unter dem Normalwert

LICHT UND BELEUCHTUNG IM DEMOGRAFISCHEM WANDEL

ANFORDERUNGEN AN DIE ZYLINDRISCHE BELEUCHTUNGSSTÄRKE

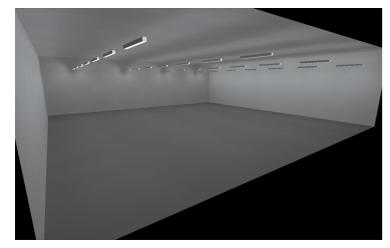
Ref. No.	Aufgabenbereich	$ar{E}_{7}$	n	U_o	R_a	R_{UGL}	$ar{E}_{m,\mathbf{z}}$	$ar{E}_{m, Wand}$	$ar{E}_{m, extsf{Decke}}$	Spezielle Anforderungen
		erforderlich	modifiziert					$U_o \ge 0.1$	0	

ANFORDERUNGEN AN DIE ZYLINDRISCHE BELEUCHTUNGSSTÄRKE

HELLIGKEITSVERTEILUNG IM RAUM – EIN MERKMAL DER "LICHTQUALITÄT"

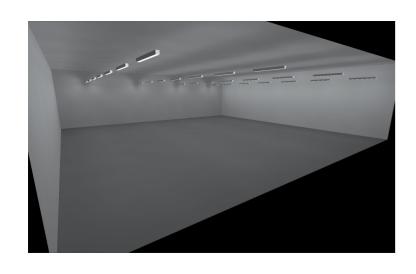
Ref. No.	Aufgabenbereich	$ar{E}_{ au}$	n	U_o	R_a	R_{UGL}	$ar{E}_{m,\mathbf{z}}$	$ar{E}_{m, m{Wand}}$	$ar{E}_{m, oldsymbol{Decke}}$	Spezielle Anforderungen
		erforderlich	modifiziert					$U_o \ge 0.1$	0	

Wie soll ich das alles umsetzen?


Vergleich ALT und NEU-Anlage

BESTANDSAUFNAHME DER ALTANLAGE

VERSAND UND VERPACKUNGSRAUM

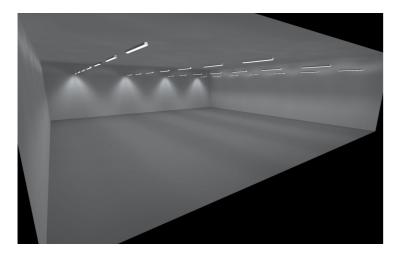


Oleveon T8

Anzahl	28 Stk.
Leistung	2x 58 W
Lichtstrom	10.000 lm
Em	313 lx
Uo	0,63

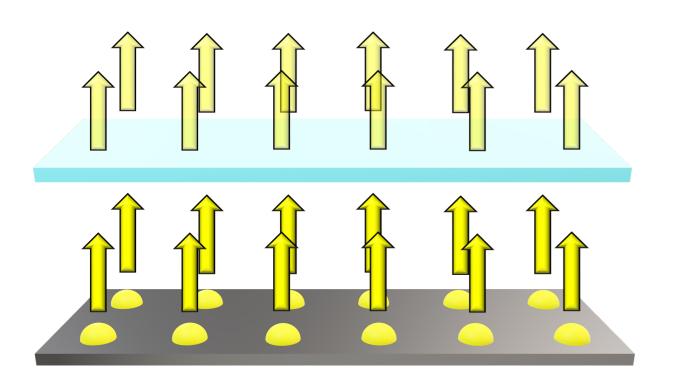
BESTANDSAUFNAHME DER ALTANLAGE

VERSAND UND VERPACKUNGSRAUM



	Oleveon T8	Oleveon Retrofit
Anzahl	28 Stk.	28 Stk.
Leistung	2x 58 W	2x 24 W
Lichtstrom	10.000 lm	7.400 lm
Em	313 lx	232 lx
Uo	0,63	0,63

BESTANDSAUFNAHME DER ALTANLAGE


VERSAND UND VERPACKUNGSRAUM

	Oleveon T8	Oleveon Retrofit	Oleveon FIT (LED)	Oleveon FIT (LED)
Anzahl	28 Stk.	28 Stk.	28 Stk.	28 Stk.
Leistung	2x 58 W	2x 24 W	44 W	57 W
Lichtstrom	10.000 lm (Lampe)	7.400 lm (Lampe)	6.000 lm (Leuchte)	8.000 lm (Leuchte)
Em	313 lx	232 lx	314 lx	403 lx
Uo	0,63	0,63	0,61	0,61

DER GEEIGNETE LICHTSTROM FÜR VERSCHIEDENE ANWENDUNGEN

Nutzlichtstorm: 900 Im

Optik, Gehäuse...

LED-Lichtstrom: 1000 lm

LED Board

Dieses Verhältnis beschreibt den Betriebswirkungsgrad

Eine LED Leuchte wird häufig als Gesamtsystem beschrieben. Eine Unterteilung von Lampe und Leuchtengehäuse gibt es dann nicht. Es wird dann immer der

Nutzlichtstrom beschrieben.

η = 1

DER GEEIGNETE LICHTSTROM FÜR VERSCHIEDENE ANWENDUNGEN

Die Betriebswirkungsgrade lagen früher in den Bereichen von ca. 60 – 85 %

Beispiel Oleveon:

- 2x 58W
- Lichtstrom der Lampen ca. 10.000 lm
- Betriebswirkungsgrad = 63.5573348999023 %
- Lichtstrom der Leuchte = ca. 6.355 lm

	Altanlage	Neuanlage	Leuchte
Lager	1x 58 W (T8)	28 W	Oleveon FIT 4000
	2x 58 W (T8)	44 W	Oleveon FIT 6000

DER GEEIGNETE LICHTSTROM FÜR VERSCHIEDENE ANWENDUNGEN

	Altanlage	Lichtstrom Lampe	Neuanlage	Leuchte
Lager	1x 58 W (T8)	5.000 lm	28 W	Oleveon FIT 4000
	2x 58 W (T8)	10.000 lm	44 W	Oleveon FIT 6000
Hallenbeleuchtung	400 W (HQL)	22.000 lm	78 W	Mirona FIT LED 13000 lm
Büro	4x 18 W (T8)	5.400 lm	27 W	Belviso C1 625 LED3900 lm
Flur	1x TC-D 26 W	1.800 lm	9,5 W	Inperla Ligra Plus 1000 lm
	2x TC-D 26 W	3.600 lm	16 W	Inperla Ligra Plus 1800 lm

BEACHTEN SIE DEN EINSATZBEREICH

Erhöhte Umgebungstemperaturen reduzieren die Lebensdauer und erhöhen die Ausfallwahrscheinlichkeit der Leuchte!

PRODUKTBESCHREIBUNG

Leuchtentyp

Kompaktes LED-Downlight in runder Bauform.

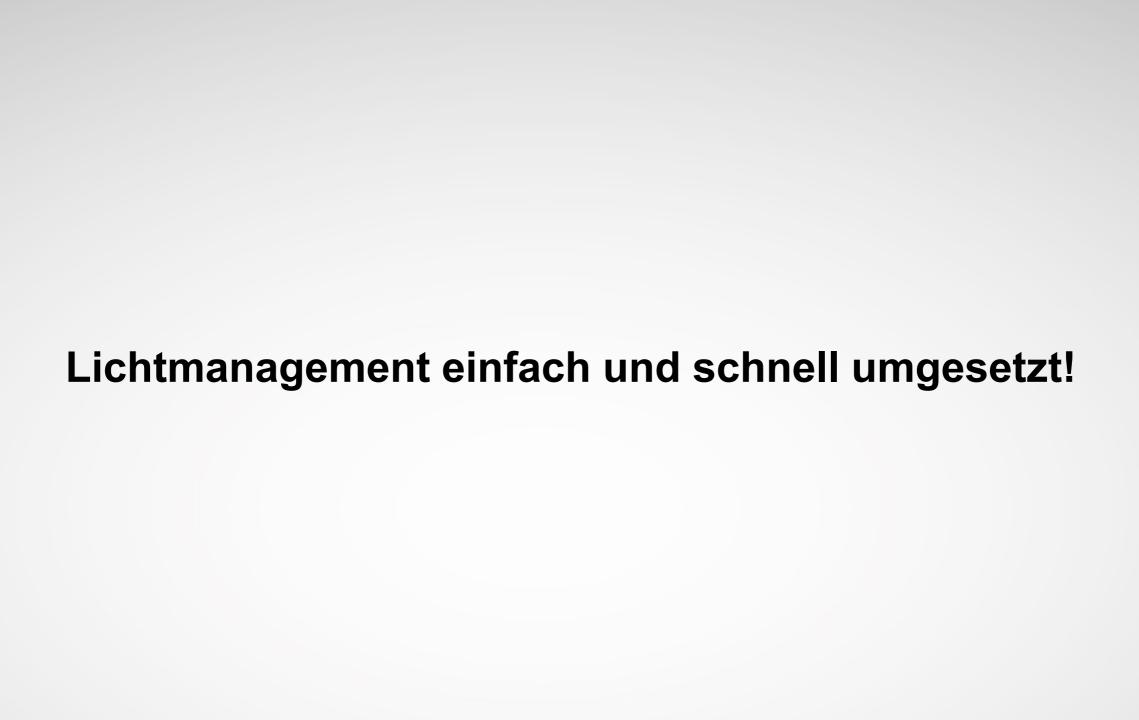
Anwendungsbereiche

Innovative Beleuchtung von Verkaufsräumen, Foyers, Fluren, Konferenzräumen, Hotels, Gaststätten und in Wohnbereichen.

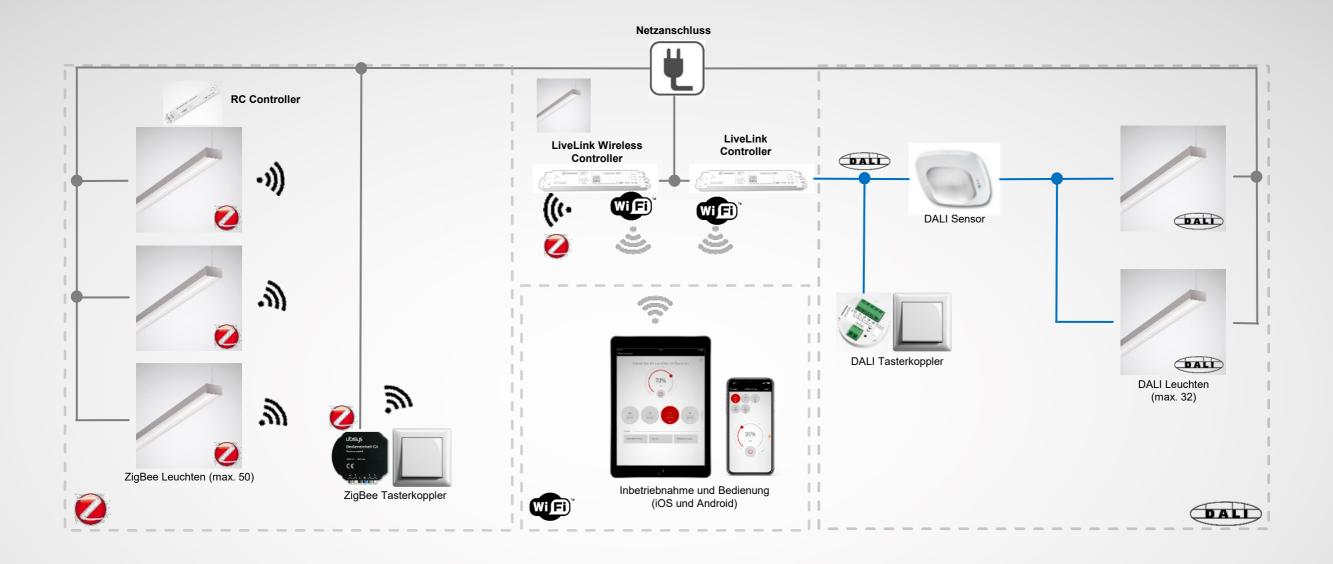
Montagearten

Einbau-Downlight für gesägte Deckenöffnungen, Einbau in gegossene Betondecken mittels Zubehör. Werkzeugloser Deckeneinbau durch Schnellmontagefedern. Optisch und technisch abgestimmte Sanierungsplatten für Deckenöffnungen mit größeren Deckenausschnittmaßen sind als Zubehör in verschiedenen Ausführungen verfügbar. Deckenausschnitt Ø 140 mm, Einbautiefe 100 mm. In Verbindung mit geschlossener Dekorabdeckung wird Schutzart IP54 raumseitig erreicht.

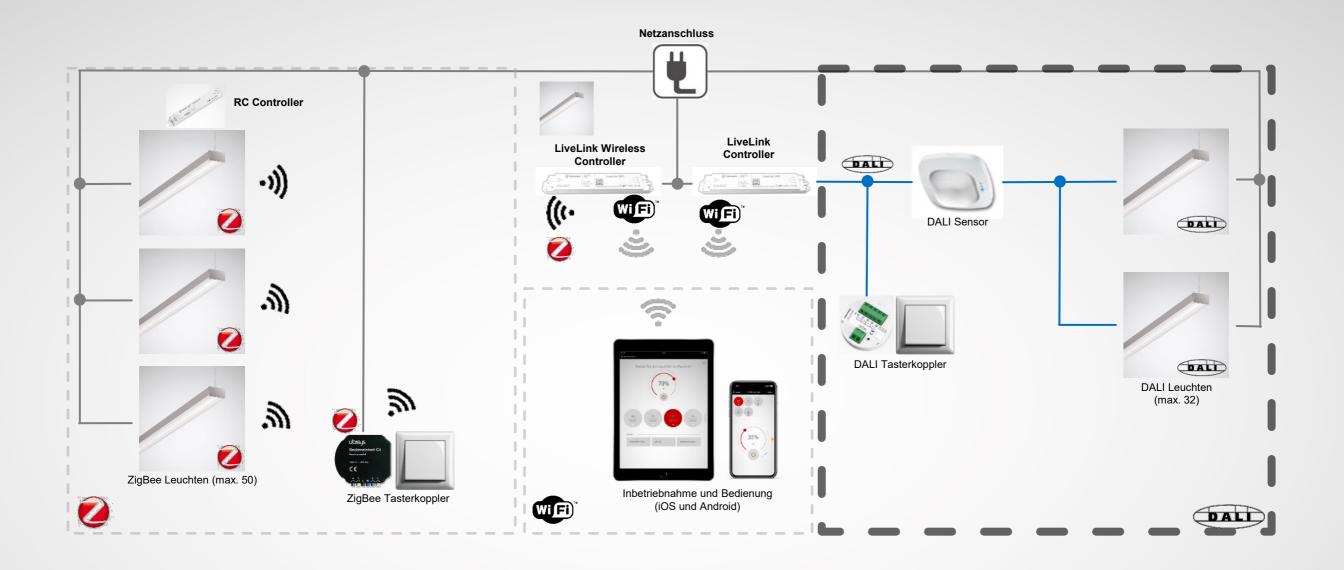
Optisches System


Reflektor aus eloxiertem Aluminium, facettiert.

LED-System


Bestückt mit einem LED-Spotmodul. Bemessungslichtstrom 1000 lm, Bemessungsleistung 9,50 W, Leuchten-Lichtausbeute 105 lm/W. Lichtfarbe neutralweiß, ähnlichste Farbtemperatur (CCT) 4000 K, allgemeiner Farbwiedergabeindex (CRI) $R_a > 80$. Mittlere Bemessungslebensdauer $L_{80}(t_q 25 \, ^{\circ}\text{C}) = 70.000 \, \text{h}$, mittlere Bemessungslebensdauer $L_{85}(t_q 25 \, ^{\circ}\text{C}) = 50.000 \, \text{h}$

Leuchtenkörper


Leuchtenkörper aus Aluminiumdruckguss. Oberfläche weiß beschichtet (RAL 9016). Außenmaße Deckenring Ø 150 mm, Leuchtenhöhe 103 mm. Leuchten- und Kühlkörper bilden eine kompakte Einheit. Zulässige Umgebungstemperatur (ta): -20 °C - +25 °C.

DIE LEITUNGSGEBUNDE UND DIE WIRELESS-LÖSUNG

DIE LEITUNGSGEBUNDE UND DIE WIRELESS-LÖSUNG

DALI 1 VS. DALI 2

DIE UNTERSCHIEDE UND DAS ÄNDERTE SICH IM WESENTLICHEN

DALI-Treiber können zusammen mit DALI2 Geräten in einem Kreis betrieben werden. (Abwärtskompatibilität)

Die DALI-Treiber **erkennen** die **neuen Befehle nicht** (ignorieren diese) und **arbeiten** im DALI-Kreis **ohne Fehlfunktion**.

DALI 2

- Erweiterung der IEC 62386 um zusätzliche Steuergeräte (Teil 103 der Norm).
- Neue Gerätetypen der Gruppe Sensoren, wie etwa
 - Taster,
 - Lichtsensoren,
 - Bewegungssensoren
 - Fernbedienschnittstellen

sind nun in der Norm definiert.

Neue Gerätetypen

•	SAVE PERSISTENT VARIABLES	Gleichbleibende Variablen werden in einem nicht flüchtigen Speicher gespeich	nert.
---	---------------------------	--	-------

- SET OPERATING MODE (DTR0) Erlaubt, die Betriebsart einzustellen.
- RESET MEMORY BANK (DTR0)
 Setzt den Speicher zurück.
- IDENTIFY DEVICE Identifiziert (d.h. lokalisiert) das Gerät.
- SET EXTENDED FADE TIME (DTR0) Eine "extended fade-time" (0,1 s bis 16 Min) (zusätzlich zur FADE TIME)
- GO TO LAST ACTIVE LEVEL
 Das letzte "ARC POWER LEVEL" wird aufgerufen.

Der D4i Treiber-Standard ermöglicht IoT Funktionen in DALI-Systemen!

Neue Befehle / Funktionen

TREIBERSPEZIFIKATION – DATEN REPORTING

 Beinhaltet die Anschlussleistung & Spannung der Leuchte, Lichtstrom, Farbtemperatur (CCT) & Farbwidergabe (CRI), Lichtverteilung, Leuchtenfarbe und weitere Leuchtendaten (Typ, Artikelnummer, Seriennummer, etc.).

- DALI (DiiA) Teil 252 Energy Reporting
- Wirkleistung, Scheinleistung, lastseitige Leistung (LED-Modul)

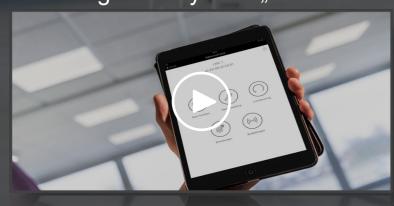
- DALI (DiiA) Teil 253 Diagnostics & Maintenance
- Ausfallbedingungen für Vorschaltgeräte und Lampen, einschließlich Zähler. <u>Informationen zu Vorschaltgeräten</u>: Betriebszeit, Anzahl der Starts, Versorgungsspannung und -frequenz, Leistungsfaktor, Temperatur und Ausgangsstrom.
- <u>Lichtquellen-Informationen</u>: Betriebsspannung, Strom, Temperatur, Lichtquellen-Startzähler, Lichtquellen-Einschaltzeit.

Konstantstrom und Konstantspannungstreiber

Der Unterschied!

ZUSAMMENFASSUNG

KONSTANTSTROM- UND KONSTANTSPANNUNGSTREIBER


LICHTMANAGEMENTSYSTEM

Dimmen von LED – ein Muss?



Ökonomie und Ökologie in der Außenbeleuchtung

Lichtmanagementsystem "LiveLink Wifi"



Lichtmanagementsystem "LiveLink Basic"

Lichtmanagementsystem "LiveLink Premium"

